

S-type load cell LC Tigo

Robust high-precision tension load cell

(!) Benefits

- Reliable weighing thanks to high resolution and accuracy class
- Specially designed for suspended vessel scales
- Versatile optional weighing electronics
- Design-in support from specialists

\ \ '

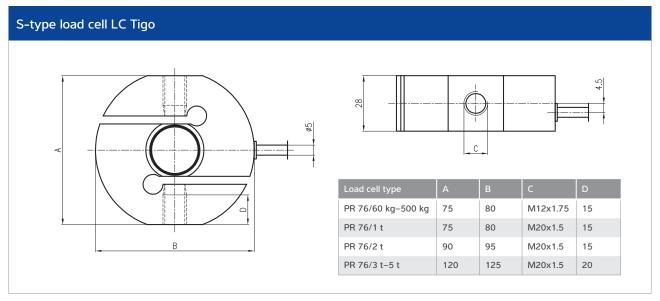
Tension load cells from the LC Tigo series have been specially designed for weighing process vessels. Suspended mounting can better compensate for vessel movements.

Verifiable tension load cells for a variety of industrial applications

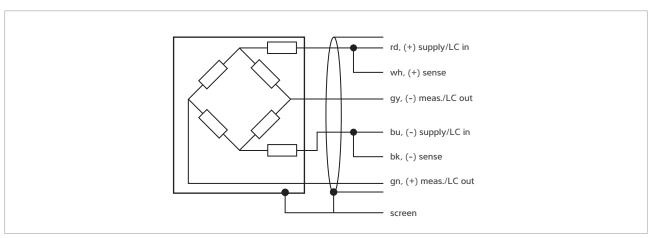
- The load cells developed in Germany guarantee the most accurate weighing results.
 All load cells are verifiable according to OIML.
- ① For weighing processes and batching applications which require tension weighing.
- ① A comprehensive optional portfolio of transmitters, indicators and controllers ensures reliable continuous processing of the measurement signals as desired.
- ① Comprehensive expertise in scale production ensures **high-quality advice** for individual projects.

The right solution for all of these applications:

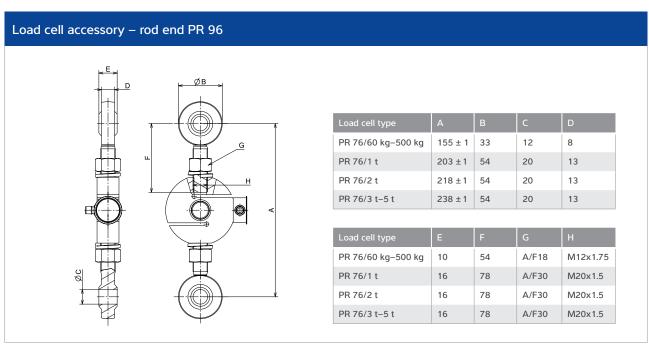
Technical specifications


S-type load cell LC Tigo

Parameters	Description	Abbr.	N	C3	Unit
Accuracy class			0.03 0.025		% E _{max}
Minimum dead load	Lowest limit of specified measuring range	E _{min}	0		% E _{max}
Maximum capacity	Highest limit of specified measuring range	E _{max}	60, 125, 250, 500, 1,000, 2,000, 3,000, 5,000		kg
Maximum usable load	Upper limit for measurements	E _{lim}	150	% E _{max}	
Destructive load	Danger of mechanical destruction	E _d	300		% E _{max}
Minimum LC verification	Minimum load cell verification interval, $v_{min} = E_{max}/Y$	Υ	1	8,333	
Deadload output return	Factor for deadload output return after load (DR = $1/2*E_{max}/Z$)	Z	/ 3,000		
Rated output	Relative output at maximum capacity	C _n	2		mV/V
Tolerance on rated output	Permissible deviation from rated output	d _c	< 2.5		%C _n
Zero output signal	Load cell output signal under unloaded condition	S _{min}	0±2		%C _n
Repeatability error	Max. change in load cell output for repeated loading	ϵ_{R}	< 0.012		%C _n
Creep	Max. change of output signal at E_{max} during 30 min. d_{cr}		< 0.030	< 0.017	%C _n
Non-linearity	Deviation from best straight line through zero		< 0.030	< 0.017	%C _n
Hysteresis	Max. difference in LC output between loading and unloading		< 0.030	< 0.017	%C _n
Temperature effect (TK) on \mathbf{S}_{\min}	Max. change related to C_n of S_{min} per 10K in B_T	TK_{Smin}	TK _{Smin} < 0.028 < 0.017		%C _n /10K
Temperature effect (TK) on parameter	Max. change related to C_n of C per 10K in B_T	TK _C	< 0.025	< 0.011	%C _n /10K
Input impedance	Between supply terminals	R_{LC}	400 ± 50		Ω
Output impedance	Between measuring terminals	Ro	352 ± 3		Ω
Insulation impedance	Between measuring circuit and housing at 100 U_{DC}	R _{IS}	>5,000×10 ⁶		Ω
Nominal supply voltage range	To hold the specified performance	B _u	≤ 10		V
Max. supply voltage	Continuous operation without damage	U _{max}	15		V
Nominal ambient temp. range	To hold the specified performance	B _T	-10 to +40		°C
Usable ambient temp. range	Continuous operation without damage	B _{TU}	-30 to +70		°C
Storage temperature range	Without electrical and mechanical stress	B _{Ti}	-30 to +70		°C
Barometric pressure influence	Influence of barometric pressure on output		≤ 0.005		%C _n /kPa
Nominal deflection	Max. elastic deformation under maximum capacity	S _{nom}	0.2 (E _{max} = 60 kg 500 kg); 0.3 (E _{max} = 1 t 5 t)		mm
Cable length			5		m
IP protection class	According to EN 60529		IP66 + IP67		


Accuracy classes and minimum verification interv	ابداد

Maximum ca- pacity	Maximum number of verification intervals, n_{max}	60 kg	125 kg	250 kg	500 kg	1,000 kg	2,000 kg	3,000 kg	5,000 kg	Unit
OIML	3,000	0.007	0.015	0.030	0.060	0.120	0.240	0.360	0.600	kg
NTEP Class III Multiple	5,000	0.007	0.015	0.030	0.060	0.120	0.240	0.360	0.600	kg
NTEP Class III L Multiple	10,000	0.003	0.007	0.013	0.025	0.050	0.100	0.150	0.250	kg


Technical diagrams

S-type load cell LC Tigo PR 76

Circuit diagram

The stated values apply only for static and quasistatic applications

Ordering information

S-type load cell LC Tigo, C3				
Туре	Order number			
PR 76/60 kg C3	9409 276 03060			
PR 76/125 kg C3	9409 276 03112			
PR 76/250 kg C3	9409 276 03125			
PR 76/500 kg C3	9409 276 03150			
PR 76/1,000 kg C3	9409 276 03210			
PR 76/2,000 kg C3	9409 276 03220			
PR 76/3,000 kg C3	9409 276 03230			
PR 76/5,000 kg C3	9409 276 03250			

S-type load cell LC Tigo, N				
Туре	Order number			
PR 76/60 kg N	9409 276 01060			
PR 76/125 kg N	9409 276 01112			
PR 76/250 kg N	9409 276 01125			
PR 76/500 kg N	9409 276 01150			
PR 76/1,000 kg N	9409 276 01210			
PR 76/2,000 kg N	9409 276 01220			
PR 76/3,000 kg N	9409 276 01230			
PR 76/5,000 kg N	9409 276 01250			

Load cell accessory S-type load cell LC Tigo					
Туре	Description	Order number			
PR 96/00N	Ball head for PR 76 up to 500 kg	9405 300 96001			
PR 96/01N	Ball head for PR 76 1 t-5 t	9405 300 96011			
PR 6143/80	Constrainer for transverse forces of <2 kN	9405 361 43801			

The products and solutions presented in this data sheet make major contributions in the following sectors:

The technical data given serves as a product description only and should not be understood as guaranteed properties in the legal sense.