

Single Point load cell PR 57

Weighing solution with high precision

(!) Benefits

- Reliable weighing through accurate measurement results
- Corrosion-resistant for demanding applications
- For a wide range of loads
- Versatile optional weighing electronics
- Design-in support from specialists

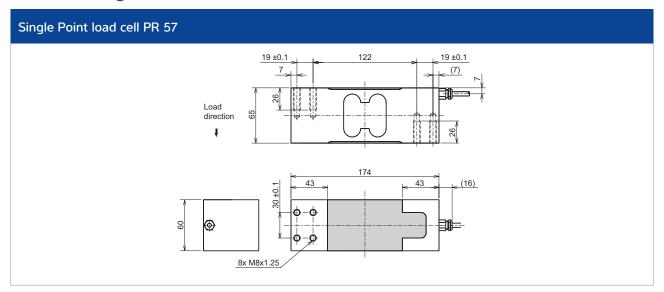
Ideal for integration in floor scales, for example: with the Single Point load cell PR 57, you can rely on the tried-and-tested quality of a leading manufacturer of industrial weighing technology. Suitable for load ranges of 300 kg to 500 kg and a platform size of up to 600 mm \times 600 mm.

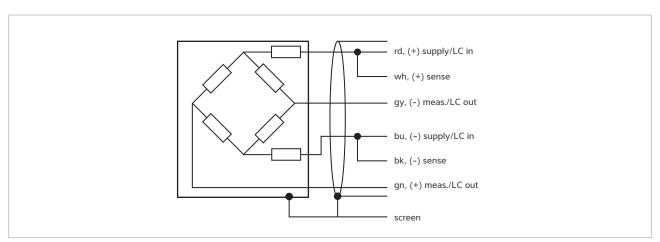
Verifiable load cells for a variety of industrial applications

- ① These load cells, developed in Germany, guarantee the most accurate weighing results. All load cells are verifiable according to OIML and NTEP.
- ① Specifically for floor platform scales. Loads from 300 kg to 500 kg. Stainless steel ensures a long product lifetime.
- ① A comprehensive optional portfolio of transmitters, indicators and controllers ensures reliable continuous processing of the measurement signals as desired.
- Comprehensive expertise in scale production ensures high-quality advice for individual projects.

Technical specifications

Single Point load cell PR 57


Parameter	Description	Abbr.	PR 57 C3MR	Unit
Accuracy class			0.02	% E _{max}
Minimum dead load	Lowest limit of specified measuring range	E _{min}	0	% E _{max}
Maximum capacity	Highest limit of specified measuring range	E _{max}	300, 500	kg
Maximum usable load	Upper limit for measurements	E _{lim}	150	% E _{max}
Destructive load	Danger of mechanical destruction	E _d	300	% E _{max}
Minimum LC verification	Minimum load cell scale interval, $v_{min} = E_{max}/Y$	Υ	15000	
Deadload output return	Factor for deadload output return after load (DR = $1/2*E_{max}/Z$)	Z	3000	
Rated output	Relative output at maximum capacity	C _n	2	mV/V
Tolerance on rated output	Permissible deviation from rated output	d _c	< 10	%C _n
Zero output signal	Load cell output signal under unloaded condition	S _{min}	0 ± 5	%C _n
Repeatability error	Max. change in load cell output for repeated loading	ϵ_{R}	< 0.01	%C _n
Creep	Max. change of output signal at E _{max} during 30 min.	d _{cr}	0.0166	%C _n
Non-linearity ¹⁾	Deviation from best straight line through zero	d _{Lin}	0.0166	%C _n
Hysteresis ¹⁾	Max. difference in LC output between loading and unloading	d _{hy}	0.0166	%C _n
Temperature effect (TK) on S _{min}	Max. change related to C_n of S_{min} per 10K in B_T	TK _{Smin}	< 0.0093	%C _n /10 K
TK on parameter ¹⁾	Max. change related to C _n of C per 10K in B _T	TK _C	< 0.0117	%C _n /10 K
Off-centre load error	In compliance with the technical data according to OIML R76		0.0233	%C _n
Input impedance	Between supply terminals	R _{LC}	380 ± 38	Ω
Output impedance	Between measuring terminals	R _o	350 ± 25	Ω
Insulation impedance	Between measuring circuit and housing at 100 V_{DC}	R _{IS}	>5,000×10 ⁶	Ω
Nominal supply voltage range	To hold the specified performance	B _u	≤ 12	V _{DC}
Max. supply voltage	Continuous operation without damage	U _{max}	15	V _{DC}
Nominal ambient temp. range	To hold the specified performance	B _T	-10 to +40	°C
Usable ambient temp. range	Continuous operation without damage	B _{Tu}	-20 to +65	°C
Storage temperature range	Without electrical and mechanical stress	B _{Ti}	-25 to +70	°C
Barometric pressure influence	Influence of barometric pressure on output		< 0.007	%Cn/kPa
Nominal deflection	Max. elastic deformation under maximum capacity	S _{nom}	< 0.7	mm
Cable length			3	m
Material	Stainless steel			
Max. platform size	In compliance with the technical data according to OIML R76		600×600	mm×mm
IP protection class	According to EN 60529		IP66/IP67	


¹⁾ Non-linearity (d_{Lin}) , hysteresis (d_{hy}) and parameter temperature effect (TK_C) are typical values. For OIML R60- and NTEP-approved load cells, the total of these values is within the permitted cumulative error limits.

Accuracy classes and minimum scale interval, v_{min}

	Maximum number of scale intervals, n _{max}	PR 57/300 kg	PR 57/500 kg	Unit
OIML	3000	0.020	0.033	kg
NTEP Class III Multiple	5,000	0.020	0.033	kg

Technical diagrams

Circuit diagram

Ex approval

Scope of validity:

Single Point load cell LC stainless steel

Single Point load cell PR 57 certificates				
Zone	Marking	Certificate number	For	
0 and 1	II 1G Ex ia IIC T6/T4 Ga		0.1. 00.5 /5	
20	II 1D Ex ia IIIC T ₂₀₀ 165°C Da	BVS 21 ATEX E 023 X	Only PR 5x/xx E	
2	II 3G Ex ec IIC T6/T4 Gc	IECEx BVS 21.0024X	All DD For illook F	
21	II 2D Fx th IIIC T110°C Dh		All PR 5x without E	

Ordering information

Single Point load cell PR 57		
Model	Order number	
PR 57/300 kg C3MR	9409 257 07130	
PR 57/500 kg C3MR	9409 257 07150	
PR 57/300 kg C3MRE	9409 657 07130	
PR 57/500 kg C3MRE	9409 657 07150	
PR 57/300 kg III 5000 S	9409 257 0C130	
PR 57/500 kg III 5000 S	9409 257 0C150	

The products and solutions presented in this data sheet make major contributions in the following sectors:

