

Single Point load cell PR 55

Precise measuring results for scale construction and a wide range of industrial applications.

(!) Benefits

- Extremely high Y value for the most accurate measurement results
- Corrosion-resistant for demanding applications
- For a wide range of loads
- Versatile optional weighing electronics
- Design-in support from specialists

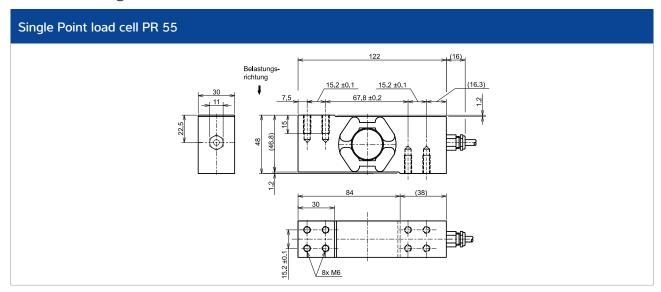
With the Single Point load cell PR 55, you can rely on the tried-and-tested quality of a leading manufacturer of industrial weighing technology. The stainless steel Single Point load cell PR 55 is suitable for loads ranging from 11 kg to 200 kg and a platform size of 500 mm \times 400 mm.

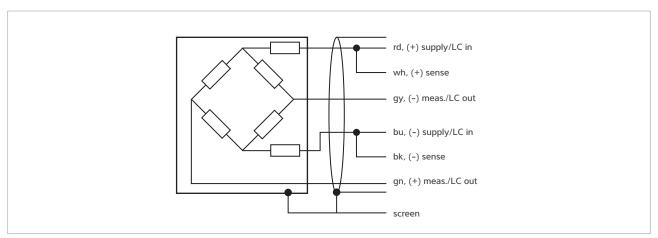
Verifiable load cells for a variety of industrial applications

- These load cells, developed in Germany, guarantee the most accurate weighing results.
 All load cells are verifiable according to OIML and NTEP.
- ① The PR 55 covers a load spectrum from 11 kg to 200 kg. Stainless steel ensures a long product lifetime.
- ① A comprehensive optional portfolio of transmitters, indicators and controllers ensures reliable continuous processing of the measurement signals as desired.
- Comprehensive expertise in scale production ensures high-quality advice for individual projects.

Technical specifications

Single Point load cell PR 55


Parameter	Description	Abbr.	PR 57 C3MR	Unit
Accuracy class			0.02	% E _{max}
Minimum dead load	Lowest limit of specified measuring range	E _{min}	0	% E _{max}
Maximum capacity	Highest limit of specified measuring range	E _{max}	11, 22, 50, 100, 200	kg
Maximum usable load	Upper limit for measurements	E _{lim}	150	% E _{max}
Destructive load	Danger of mechanical destruction	E _d	300	% E _{max}
Minimum LC verification	Minimum load cell scale interval, $v_{min} = E_{max}/Y$ Y		22,000 (11 kg and 22 kg) 25,000 (from 50 kg)	
Deadload output return	Factor for deadload output return after load (DR = $1/2*E_{max}/Z$)	Z	3000	
Rated output	Relative output at maximum capacity	C _n	2	mV/V
Tolerance on rated output	Permissible deviation from rated output	d _c	< 10	%C _n
Zero output signal	Load cell output signal under unloaded condition	S _{min}	0 ± 5	%C _n
Repeatability error	Max. change in load cell output for repeated loading	ϵ_{R}	< 0.01	%C _n
Creep	Max. change of output signal at E _{max} during 30 min.	d _{cr}	< 0.0166	%C _n
Non-linearity ¹⁾	Deviation from best straight line through zero	d _{Lin}	< 0.0166	%C _n
Hysteresis ¹⁾	Max. difference in LC output between loading and unloading	d _{hy}	< 0.0166	%C _n
Temperature effect (TK) on S _{min}	Max. change related to C_n of S_{min} per 10K in B_T	TK _{Smin}	<0.0063 (11 kg and 22 kg) <0.0056 (from 50 kg)	%C _n /10 K
TK on parameter ¹⁾	Max. change related to C_n of C per 10K in B_T	TK _C	< 0.0117	%C _n /10 K
Off-centre load error	In compliance with the technical data according to OIML R76		0.0233	%C _n
Input impedance	Between supply terminals	R _{LC}	1100 ± 50	Ω
Output impedance	Between measuring terminals	Ro	960 ± 50	Ω
Insulation impedance	Between measuring circuit and housing at 100 V_{DC}	R _{IS}	>5000×10 ⁶	Ω
Nominal supply voltage range	To hold the specified performance	B _u	≤ 12	V _{DC}
Max. supply voltage	Continuous operation without damage	U _{max}	15	V _{DC}
Nominal ambient temp. range	To hold the specified performance	B _T	-10+40	°C
Usable ambient temp. range	Continuous operation without damage	B _{Tu}	-30+70	°C
Storage temperature range	Without electrical and mechanical stress	B _{Ti}	-50+80	°C
Barometric pressure influence	Influence of barometric pressure on output		< 0.004	%Cn/kPa
Nominal deflection	Max. elastic deformation under maximum capacity	S _{nom}	< 0.25	mm
Cable length			3.5	m
Material	Stainless steel			
Max. platform size	In compliance with the technical data according to OIML R76		500 x 400	mm×mm
IP protection class	According to EN 60529		IP66/IP68/IP69	


 $^{^{1)}}$ Non-linearity (d_{Lin}), hysteresis (d_{hy}) and parameter temperature effect (TK_C) are typical values. For OIML R60- and NTEP-approved load cells, the total of these values is within the permitted cumulative error limits.

Accuracy classes and minimum scale interval, $\boldsymbol{v}_{\text{min}}$

	Maximum number of scale intervals, n _{max}	11 kg	22 kg	50 kg	100 kg	200 kg	Unit
OIML	3000	0.5	1.00	2.00	4.00	8.00	g
NTEP Class III Multiple	5000	0.5	1.00	2.00	4.00	8.00	g

Technical diagrams

Circuit diagram

Ex approval

Scope of validity:

Single Point load cell LC stainless steel

Single Point load cell PR 55 certificates				
Zone	Marking	Certificate number	For	
0	II 1G Ex ia IIC T6/T4 Ga		0.1.00.5./5	
20	II 1D Ex ia IIIC T ₂₀₀ 165°C Da	BVS 21 ATEX E 023 X	Only PR 5x/xx E	
2	II 3G Ex ec IIC T6/T4 Gc	IECEx BVS 21.0024X		
21	II 2D Ex tb IIIC T110°C Db		All PR 5x without E	

Ordering information

Single Point load cell PR 55		
Model	Order number	
PR 55/11 kg C3MR	9409 255 07011	
PR 55/22 kg C3MR	9409 255 07022	
PR 55/50 kg C3MR	9409 255 07050	
PR 55/100 kg C3MR	9409 255 07110	
PR 55/200 kg C3MR	9409 255 07120	
PR 55/11 kg C3MRE	9409 655 07011	
PR 55/22 kg C3MRE	9409 655 07022	
PR 55/50 kg C3MRE	9409 655 07050	
PR 55/100 kg C3MRE	9409 655 07110	
PR 55/200 kg C3MRE	9409 655 07120	
PR 55/11 kg III 5000 S	9409 255 0C011	
PR 55/22 kg III 5000 S	9409 255 0C022	
PR 55/50 kg III 5000 S	9409 255 0C050	
PR 55/100 kg III 5000 S	9409 255 0C110	
PR 55/200 kg III 5000 S	9409 255 0C120	

The products and solutions presented in this data sheet make major contributions in the following sectors:

The technical data given serves as a product description only and should not be understood as guaranteed properties in the legal sense.